半监督学习加速AI产业数据标注流程

所属专题:硅谷人工智能

所属领域: 人工智能

嘉宾 : 孙鹏 | 苏宁美国硅谷研究院大数据实验室高级数据科学家

会议室 : 宴会厅3

讲师介绍

专题演讲嘉宾:孙鹏

苏宁美国硅谷研究院 大数据实验室高级数据科学家

孙鹏,苏宁大数据实验室高级数据科学家,美国弗吉尼亚理工大学统计学博士,研究方向是非参数贝叶斯理论。读博期间在Capital  One银行实习参与用户分级项目。拥有7年以上数据科学建模经验,博士毕业后在KPMG就职并单独承担OR模型的开发,并曾在美国房地美公司负责模型风险调控。2018年加入苏宁参与个人贷款风控模型的研发。精通R,python和Rcpp,对机器学习领域的新方法感兴趣。曾在Kaggle历史总奖金最高的比赛(Zillow Price)排名第一。

议题介绍

地点:宴会厅3
所属专题:硅谷人工智能
所属领域:
人工智能

演讲:半监督学习加速AI产业数据标注流程

数据标注在人工智能领域是决定数据质量的关键一环,而丰富的标签是成功的机器学习建模的先决条件。在诸如图像识别、文本识别和语音识别等领域,未知的图片、文本和音频往往因为需要人工打标签而耗费大量成本。半监督学习正是一种潜在的降低此类成本的方法。通过人工智能和人工标注更有效的“互动”,半监督学习可以加速数据标注的流程。

主要内容

1. 人工智能领域数据标签简介

2. 半监督学习简介,以及和有监督学习、无监督学习的区别

3. 半监督学习常见方法

4. 半监督学习加速数据标注的机制

听众收益

1. 了解到人工智能领域易被忽视却又至关重要的一环:数据标注

2. 理解机器学习领域监督学习,无监督学习和半监督学习的区别

3. 了解到人工智能领域利用半监督学习加速数据标注的实例

交通指南

© 2020 Baidu - GS(2019)5218号 - 甲测资字1100930 - 京ICP证030173号 - Data © 长地万方
想要批量报名或更多优惠?
立即联系票务小姐姐 Ring
或致电:17310043226