娄寅博士毕业于康奈尔大学,现就职于 Airbnb 担任机器学习工程师。他一直从事监督式学习,特别是模型可理解性的研究,并在 KDD、JCGS 等相关会议和杂志上发表多篇论文。他也是 ICML、KDD、CIKM 等机器学习和数据挖掘会议的程序委员会委员。
本次讲座将介绍一种新的 Boosting 方法:Boosted 决策表。我们会介绍学习决策表的方法并讨论为什么决策表比标准的决策树更适合 Gradient Boosting 框架。我们还会介绍一种高效的数据结构来存储及表示决策表,从而减少预测阶段的时间开销。最后我们会用 LinkedIn news feed 作为实际案例讨论决策表在实践中的应用。
In this talk I will present gradient boosted decision tables (BDTs). I will present novel algorithms to fit decision tables and discuss why decision tables are better weak learner in the gradient boosting framework. In addition, I will talk about efficient data structures to represent decision tables and a novel fast algorithm to improve the scoring efficiency for boosted ensemble of decision tables. In the end, I will also discuss our successful deployment boosted decision tables to LinkedIn news feed system that achieved significant lift on key metrics. This work has been published in KDD'17.